Publications
Showing entries 41 - 60 out of 361
Glaser, L. (2023). Computational explorations of a deformed fuzzy sphere. Journal of Mathematical Physics, 64(12), Article 123503. https://doi.org/10.48550/arXiv.2304.13002, https://doi.org/10.1063/5.0156978
Steinacker, H. C., & Tran, T. (2023). Spinorial higher-spin gauge theory from IKKT model in Euclidean and Minkowski signatures. Journal of High Energy Physics, 2023(12), Article 10. https://doi.org/10.48550/arXiv.2305.19351, https://doi.org/10.1007/JHEP12(2023)010
Waldmann, B., Haßler, M. F. T., Müllner, A., Puchegger, S., & Peterlik, H. (2023). Strain and Strain Recovery of Human Hair from the Nano- to the Macroscale. Life, 13(12), Article 2246. https://doi.org/10.3390/life13122246
Carqueville, N., & Szegedy, L. (2023). Fully extended r-spin TQFTs. Quantum Topology, 14(3), 467–532. https://doi.org/10.4171/QT/193
De Falco, V., & Battista, E. (2023). Analytical results for binary dynamics at the first post-Newtonian order in Einstein-Cartan theory with the Weyssenhoff fluid. Physical Review D, 108(6), Article 064032. https://doi.org/10.48550/arXiv.2309.00319, https://doi.org/10.1103/PhysRevD.108.064032
Bagchi, A., Chatterjee, R., Kaushik, R., Pal, S., Riegler, M., & Sarkar, D. (2023). BMS field theories with u (1) symmetry. Physical Review D, 107(10), Article 106019. https://doi.org/10.1103/PhysRevD.107.106019
Steinacker, H. C. (2023). One-loop effective action and emergent gravity on quantum spaces in the IKKT matrix model. Journal of High Energy Physics, 2023(5), Article 129. https://doi.org/10.48550/arXiv.2303.08012, https://doi.org/10.1007/JHEP05(2023)129
Brunner, I., Carqueville, N., & Roggenkamp, D. (2023). Truncated Affine Rozansky–Witten Models as Extended TQFTs. Communications in Mathematical Physics, 400(1), 371–415. https://doi.org/10.1007/s00220-022-04614-4, https://doi.org/10.48550/arXiv.2201.03284
Karczmarek, J. L., & Steinacker, H. C. (2023). Cosmic time evolution and propagator from a Yang-Mills matrix model. Journal of Physics A: Mathematical and Theoretical, 56(17), Article 175401. https://doi.org/10.1088/1751-8121/acc61e, https://doi.org/10.48550/arXiv.2207.00399
Bergshoeff, E. A., van Helden, K., Lahnsteiner, J., Romano, L., & Rosseel, J. (2023). Generalized Newton-Cartan geometries for particles and strings. Classical and Quantum Gravity, 40(7), Article 075010. https://doi.org/10.1088/1361-6382/acbe8c
Hock, A., Grosse, H., & Wulkenhaar, R. (2023). A Laplacian to Compute Intersection Numbers on M¯g,n and Correlation Functions in NCQFT. Communications in Mathematical Physics, 399(1), 481–517. https://doi.org/10.1007/s00220-022-04557-w
Battista, E., & Steinacker, H. C. (2023). Fermions on curved backgrounds of matrix models. Physical Review D, 107(4), Article 046021. https://doi.org/10.1103/PhysRevD.107.046021
Anastasopoulos, P., Kaneta, K., Kiritsis, E., & Mambrini, Y. (2023). Anomalous and axial Z′ contributions to g−2. Journal of High Energy Physics, 2023(2), Article 51. https://doi.org/10.1007/JHEP02(2023)051
Battista, E., De Falco, V., & Usseglio, D. (2023). First post-Newtonian N-body problem in Einstein-Cartan theory with the Weyssenhoff fluid: Lagrangian and first integrals. European Physical Journal C, 83(2), Article 112. https://doi.org/10.48550/arXiv.2301.08954, https://doi.org/10.1140/epjc/s10052-023-11249-9
De Falco, V., Battista, E., & Antoniadis, J. (2023). Analytical coordinate time at first post-Newtonian order. EPL, 141(2), Article 29002. https://doi.org/10.1209/0295-5075/acb07e, https://doi.org/10.48550/arXiv.2301.02472
Szegedy, L. (2023). On invertible 2-dimensional framed and r-spin topological field theories. Homology, Homotopy and Applications, 25(1), 105-126. https://doi.org/10.4310/HHA.2023.v25.n1.a6
Carqueville, N., & Müller, L. (2023). Orbifold completion of 3-categories. https://doi.org/10.48550/arXiv.2307.06485
Carqueville, N. (2023). Orbifolds of topological quantum field theories. https://doi.org/10.48550/arXiv.2307.16674
Runkel, I., Szegedy, L., & Watts, G. M. T. (2023). Parity and spin CFT with boundaries and defects. SciPost Physics, 15(5), Article 207. https://doi.org/10.21468/SciPostPhys.15.5.207
Battista, E., & Esposito, G. (2022). Geodesic motion in Euclidean Schwarzschild geometry. European Physical Journal C, 82(12), Article 1088. https://doi.org/10.1140/epjc/s10052-022-11070-w
Showing entries 41 - 60 out of 361